

1101 McKinley Street
Anoka, MN 55303
Phone (763) 786-6682
Fax (763) 786-2167
www.polycam.com

Part Name: Extra Heavy ID-Controlled Weld-On Transition Fitting
Part Number: 865-xxxx

ID Controlled Weld-On Transition Fitting

Description - The Poly-Cam ID-Controlled Weld-On is designed to provide a smooth, interior transition between the steel pipe and the polyethylene pipe. The connection between the steel fitting and the polyethylene pipe is accomplished with a multi-level barb system and a compression ring supporting the connection. The multi-level barb system provides the sealing connection between the steel and the polyethylene pipe. The interior of the fitting contains no sharp edges in which pipeline cleaning pigs can be caught or damaged. The weld-on is coated with an epoxy coating. The compression ring is constructed out of carbon steel material and coated with an epoxy-coated material. Stainless steel compression rings are optional.

The Poly-Cam ID-Controlled Weld-On is a custom design fitting allowing the installer to transition from one specific type steel materials to a specific type of polyethylene pipe.

Tested and complies to ASTM D2513, ASTM 1973-05, D1599, D1598

Steel Material Options:

- A53B ERW Carbon Steel / A106 Seamless Carbon Steel

Available in the following upon request and subject to availability: X42, X52, X60, X65, X70, API 5L, NACE MR0175, A333 Grade 6

- 304 Stainless Steel
- 316 Stainless Steel

Polyethylene Pipe Options:

- PE 3408 ASTM F-714
- PE 3408 ASTM 2513 Gas Pipe
- PE 2406
- PE 4710

Additional options are available.

Epoxy Coated Material:

- Color HB, Red Oxide, IF1947T or Green 3M ${ }^{\mathrm{TM}}$ Scotchkote ${ }^{\mathrm{TM}}$ Fusion-Bonded Epoxy Coating 6233

Series 865 Extra Heavy ID Controlled WeldOn (A53/A106)

SDRı1

Nominal Size (In.)	HDPE/ Steel Pipe O.D. A	Steel Pipe I.D. \mathbf{B}	Steel Length \mathbf{C}	HDPE Pipe Length \mathbf{D}	Compression Ring Length E	Compression Ring O.D. SDR 11 \mathbf{F}	SDR 11 HDPE I.D. G
0.75	1.05	0.742	11	8	1.57	~ 1.84	0.85
2	2.375	1.939	12	24	3.5	~ 2.84	1.917
2.5	2.875	2.323	14	24	3.5	~ 3.41	2.321
3	3.5	2.9	14	24	5	~ 4.14	2.826
4	4.5	3.826	14	24	5.5	~ 5.44	3.633
6	6.625	5.761	20	30	8	~ 8.0	5.349
8	8.625	7.625	22	30	10	~ 10.3	6.963
10	10.75	9.75	26	40	12	~ 12.9	8.679
12	12.75	11.75	28	40	12	~ 15.3	10.293
14	14	13	28	40	12	~ 16.8	11.301
16	16	15	28	48	14	~ 19.2	12.915
18	18	17	28	48	14	~ 21.6	14.532
20	20	19	28	48	15	~ 24.0	16.146
24	24	23	28	48	15	~ 28.8	19.374

